
Lab11. Shell Scripts (III)-
Programming
(Looping Constructs)

INSTRUCTOR :MURAD NJOUM

Objectives
After completing this lab, the student should be able to:
- Include programming looping constructs in shell scripts.
- Understand and use the while, until, and for loops constructs.
- Learn how to make for loops more efficient by using command outputs as
lists.

There are different loop constructs that may be used in
shell scripts which include:
while loops
until loops
for loops

Each has its own useful features that make it useful in certain situations.

While Loop

while condition
do
statement(s)
done
example:
vi listarguments
while [$# -ne 0]

do

echo $1

shift

done

:wq

Run the above script as follows:

listarguments a hello 7 x
Check the output.

Output:
a
hello
7
x

Execute the Scripts:
Rewrite the delete script we wrote

in the last lab such that it works as

follows:

delete file1 wrong dir1 file2

File file1 is deleted

wrong: No such file or directory

Directory dir1 is deleted

File file2 is deleted

if [$# -ne 1]
then

echo Usage:delete filename
exit 1

else
if [-f $1]

then
rm $1 # $1 exists and is a file name
echo File $1 has been deleted

exit 0
elif [-d $1]
then rm -r $1 # $1 exists and is directory
echo Directory $1 has been deleted
exit 0

else
echo $1: No Such file or directory

exit 2
fi

fi

Last Delete

#! /bin/bash

if [$# -eq 0]

then

echo "No argument was entered"

exit 1

fi

while [$# -ne 0]

do

if [-f $1]

then

rm $1 # $1 exists and is a file name

echo File $1 has been deleted

elif [-d $1]

then rm -r $1 # $1 exists and is directory

echo Directory $1 has been deleted

else

echo $1: No Such file or

directory

fi

shift

done

Cont..

echo Enter name

read name

while [“$name” != “ahmad”]

do

echo $name: wrong name. Try again.

echo Enter name

read name

done

:wq

Sometimes the loop will stop executing based on the user input, as

follows:

vi findahmad

Question
Now modify the checkusername script from the previous lab such that it is called
checkusernames instead and works as follows:

checkusernames

Enter user name to check or word “enough” to stop

u1112345

Enter user name to check or word “enough” to stop

u11

Enter user name to check or word “enough” to stop

u1123456

Enter user name to check or word “enough” to stop

u1112345 = Salem Hamdi

u11 = No such user name

u1123456 = Sabah Khaled

enough

echo Enter user name to check or word "enough" to stop

read name

while ["$name" != "enough"]

do

y=$(grep $name /etc/passwd |cut -d : -f1)

if ["$name" = "$y"]

then

x=$(grep $name /etc/passwd |cut -d : -f5|tr '_' ' ')

echo $name = $x

else

echo No such user name

fi

echo Enter user name to check or word "enough" to stop

read name

done

^

^

Break and Continue Statements

The programmer can use break and continue statements inside shell script

loops which mean the same as they do in the C language:

break - exit the loop immediately.

continue – stop running the current cycle but go back and check the

condition.

In addition they can use break and continue followed by a number to

specify how many loop levels they want them to work for. For example:

break 2

Will exit out of two nested loops if they exist.

#!/bin/bash
#breaking a loop
num=0

while [$num -lt 10]

do

((num ++))

if [$num -eq 5]

then

echo "break done"

break

fi

echo $num

done

echo Loop is complete

#!/bin/bash

#continue a loop

num=0

while [$num -lt 10]

do

((num ++))

if [$num -eq 5]

then

echo "continue done"

Continue

fi

echo $num

done

echo Loop is complete

until loop

The until loop is similar to the while loop, but stops when the condition becomes true.
until false

do

statements

done

Modify the above two programs such that they use the until construct instead of

the while construct and try them out.

Did they work? ______________.

until ["$name" = "enough"] until [$# -eq 0]

For loop

In shell scripts, the for loop is very powerful and useful. The general structure of

the for loop is as follows:
for item in list of items

do

statement(s)

done

What makes a for loop powerful is the different ways a list of items may be

specified. Let us start with a simple example:

vi names
for name in ahmad hamdan subha khaled

do

echo $name

done

:wq

Run the script names. It should display the names given in the list

#! /bin/bash

for name in $*

do

echo $name

done

Rewrite the delete script we wrote at

the beginning of this lab such that

it uses a for loop instead of a while loop.

Did it work? _________________.

if [$# -eq 0]

then

echo no arguments was entered

exit 1

fi

for i in $*

do

if [-f $i]

then

rm $i # $1 exists and is a file

name

echo File $i has been deleted

elif [-d $i]

then rm -r $i # $1 exists and is

directory

echo Directory $i has been

deleted

else

echo $i: No Such file or directory

fi

done

Using a for loop, write a script called comp311 that lists the full names of all the users

that are registered in the comp311 course.

Answer:

for i in $(grep comp311 /etc/passwd|cut -d : -f5)

do

echo $i

done

Now rewrite the script comp311 such that it will display only the names of the users that

are currently logged in to the system. (hint: use the output of the who command)

Answer:

for login in $(who|tr -s ' '|cut -d ' ' -f1)

do

name=$(grep $login /etc/passwd |cut –d : -f5)

echo $name

done

The for loop can also be applied to a directory of files as follows:
vi myfiles

for file in *

do

echo $file

done

Write a script called filetypes that uses a for loop to type the name and type (file, dir, or

unknown) for each file in a given directory as follows:

Assume that I use the script in the following way:

filetypes /etc

then the script should display the names of all the files under directory /etc and the type
of each of those files:

or $(ls)

#! /bin/bash

for file in $1/*

do

if [-f $file]

then

echo $file : is File type

elif [-d $file]

then

echo $file :is Directory type

else

echo $file : is Unknown type

fi

done

The which command displays the directory in the PATH that contains the

command. Try

it as follows:

which ls

What is the result? _______________________ ./bin/ls

Write a script called mywhich that simulates the which command.

You are not allowed to use the which command in your script.

(hint: use the for loop and the sed command)

#!/bin/bash
for list in $(echo $PATH|sed "s/:/ /g")
solve another way
do
if [-f $list /$1]

then
echo $list /$1
exit 0

fi
done
echo $1= No such command

field=1

y=$(echo $PATH|cut -d : -f$field)

while [-n "$y"]

do

if [-f $y/$1]

then

echo $y/$1

exit

fi

((field ++))

y=$(echo $PATH|cut -d : -f$field)

done

echo $1= No such command

While loop ?? (Bonus :10)

